Derivatives are essentially integer partitions

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integer Partitions

Let  denote the positive octant of the regular -dimensional cubic lattice. Each vertex (1 2     ) of  is adjacent to all vertices of the form (1 2      + 1     ), 1 ≤  ≤ . A -partition of a positive integer  is an assignment of nonnegative integers 12 to the vertices of , subject to both an ordering condition 12 ≥ max 1≤≤ 12+...

متن کامل

Intersecting integer partitions

If a1, a2, . . . , ak and n are positive integers such that n = a1+a2+· · ·+ak, then the sum a1 + a2 + · · ·+ ak is said to be a partition of n of length k, and a1, a2, . . . , ak are said to be the parts of the partition. Two partitions that differ only in the order of their parts are considered to be the same partition. Let Pn be the set of partitions of n, and let Pn,k be the set of partitio...

متن کامل

Lectures on Integer Partitions

2000, under the auspices of the Pacific Institute for the Mathematical Sciences. My original intent was to describe the sequence of developments which began in the 1980's and has led to a unified and automated approach to finding partition bijections. These developments, of six papers, in fact form much of the content of these notes, but it seemed desirable to preface them with some general bac...

متن کامل

Subsums of Integer Partitions

Abstract For integer partitions λ : n = a1 + ...+ ak, where a1 ≥ a2 ≥ . . . ≥ ak ≥ 1, we study the sum a1 + a3 + . . . of the parts of odd index. We show that the average of this sum, over all partitions λ of n, is of the form n/2 + ( √ 6/(8π)) √ n log n+ c2,1 √ n+O(log n). More generally, we study the sum ai + am+i + a2m+i + . . . of the parts whose indices lie in a given arithmetic progressio...

متن کامل

Integer Partitions and Convexity

Let n be an integer ≥ 1, and let p(n, k) and P (n, k) count the number of partitions of n into k parts, and the number of partitions of n into parts less than or equal to k, respectively. In this paper, we show that these functions are convex. The result includes the actual value of the constant of Bateman and Erdős.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 2000

ISSN: 0012-365X

DOI: 10.1016/s0012-365x(99)00412-4